Time–space fractional (2 + 1) dimensional nonlinear Schrödinger equation for envelope gravity waves in baroclinic atmosphere and conservation laws as well as exact solutions

نویسندگان

  • Chen Fu
  • Chang Na Lu
  • Hong Wei Yang
چکیده

In this article, nonlinear propagation of envelope gravity waves is studied in baroclinic atmosphere. The classical (2 + 1) dimensional nonlinear Schrödinger (NLS) equation can be derived by using the multiple-scale, perturbation method. Further, via the semi-inverse method, the Euler–Lagrange equation and Agrawal’s method, the time–space fractional (2 + 1) dimensional nonlinear Schrödinger (FNLS) equation is obtained to describe the envelope gravity waves. Furthermore, the conservation laws of time–space FNLS equation are discussed on the basis of Lie group analysis method. Finally, the exact solutions to the equation are given by employing the exp(–φ(ξ )) method. The results demonstrate that the nonlinear effect caused by the fractional order leads to the change of the propagation characteristics of envelope gravity waves, the construction of fractional model has far-reaching significance for the research of nonlinear propagation of envelope gravity waves in actual atmospheric and ocean movement. PACS Codes: 02.30.Jr; 43.75.Fg; 92.10.Hm

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics

In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...

متن کامل

Exact solutions of distinct physical structures to the fractional potential Kadomtsev-Petviashvili equation

In this paper, Exp-function and (G′/G)expansion methods are presented to derive traveling wave solutions for a class of nonlinear space-time fractional differential equations. As a results, some new exact traveling wave solutions are obtained.

متن کامل

Solving nonlinear space-time fractional differential equations via ansatz method

In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...

متن کامل

Solution of propagation of acoustic-gravity waves in the atmosphere using finite difference method of order two

Investigating waves propagation’s equation in the atmosphere is one of the important and widely used issues in various sciences, which has attracted many researchers. A type of propagating waves is an acoustic-gravity wave. These type of waves have a lot of stationarity properties and can be propagate to a high altitude in the atmosphere. The equation of acoustic-gravity wave propagation is a h...

متن کامل

Topological soliton solutions of the some nonlinear partial differential equations

In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018